25.3 ABOUT THE UNCERTAINTY OF PROPERTIES OF ENGINEERING BARRIERS IN LONG-TERM SAFETY ASSESSING OF SURFACE DISPOSAL AT THE “VECTOR” COMPLEX

UDC 621.039.7 📖 Issue 25 / 2016 • 26-37 pages

 

Yu. Olhovyk

Yu. Olhovyk Ph. D(Geol.-Min.), SI «Institute of Enviromental Geochemistry NAS Ukraine», yolkhovyk@ukr.net

Abstract

The safety system elements envisaged in the “Vector” complex design for the long-term safety of surface disposal of radioactive waste from Chernobyl NPP, exclusion zone companies, nuclear power plants operating in Ukraine, mills of SC “Ukrainian State Association “Radon” are discussed in the publication. Establishing of activity limits for radioactive waste disposal in the near-surface repositories is an element of this safety system. Current uncertainties in description of the disposal system at the “Vector” site significantly complicate the calculation of activity limits that can be safely disposed of at the site, taking into account the existence of the long-term (500 years or more) storage facility. Significant information has been collected for the geology and hydrogeology of the “Vector” complex site. To date, for the components of engineered barriers (matrix, impervious screens, concrete products) there are neither specific parameters as needed to assess the long-term safety of the disposal , nor specific parameters of their resistance to degradation over a long period after the storage facility is decommissioned. It is proposed that the task of determining the activity limits can be solved on the basis of the available data on the properties of the geological environment (zone of aeration, water-bearing complex of quaternary sediments), taking into account the assumption that the engineered barriers can function effectively for 500 years during exploitation and active control.

 

Key words: safety, surface disposal, activity limit, engineered barriers.

 

Article



Reference

  1. INTERNATIONAL ATOMIC ENERGY AGENCY (1999), IAEA,Vienna, AUT.
  2. Zakon Ukrai’ny, (2008), Pro Zagal’noderzhavnu cil’ovu ekologichnu programu povodzhennja z radioaktyvnymy vidhodamy, 516 .
  3. Derivation of activity limits for the disposal of radioactive waste in near surface disposal facilities ( 2003), IAEA,Vienna, AUT.
  4. Shestopalov, V.M. (2000), Water exchange in the hydrogeological structures and Chernobyl disaster, Kiev, UA, 622 .
  5. Gigijenichni normatyvy (2010), Rivni zvil’nennja radioaktyvnyh materialiv vid reguljujuchogo kontrolju, Zatv. postanovoju golovnogo sanitarnogo likarja Ukrai’ny, 22 Kyiv, UA.
  6. Gigijenichni normatyvy, (2005), Osnovni sanitarni pravyla zabezpechennja radiacijnoi’ bezpeky Ukrai’ny, DSP 6.177-2005-09-02 .
  7. Radioactive Waste Management and NPP “Energoatom” operation (2014), available at: energoatom.kiev.ua/atachs/Report_RW_2014_ua.pdf.
  8. Kozlov, P.V., Sljunchev, O.M., Rovnyj, S.I., Kir’janov, K.V. (2009), Opredelenie teplovydelenija cementnogo kompaunda v processe , Journal of Radiation Safety, 3 , pp. 17–26.
  9. Moskvin, V., Ivanov, F., Alekseev, S., Gusev, E. (1980), Korrozija betona i zhelezobetona, Stroyizdat, Moscow, RU, 218 p.
  10. Ahmad’jarov, D. (1995), Betony novogo pokolenija dlja jadernoj jenergetiki i promyshlennosti Rossii ,Nuclear Energy, 78(2), рp. 127 – 132.
  11. Stalder, F., Quality Assurance concept in the Field of Low and Intermediate Radioactive Waste Packaging , PATRAM 86, 1.
  12. Ivanov I.A., Shatkov, V.V., Sorokin, V.T., Gulin, A.N. (1994), Diffuzija radionuklidov v cementsoderzhashhih materialah , Radiochemistry, 36(2), pp. 36-44.
  13. Ivanov, I.A., Cvetkov, V.I., Eroshkov, S.N. (2002), Diffuzija radionuklida Cs-137 v materiale nevozvratnyh betonnyh kontejnerov dlja hranenija RAO , StPb, RU, pp. 104-105.
  14. Sorokin V.T., Zaruchevskaja G.P., Shhvedov A.A. (1997), Nekotorye voprosy ocenki riska pri zahoronenii radioaktivnyh othodov v pripoverhnostnye sooruzhenija, Ecological Chemistry, 6, pp.182 –186.
  15. Dolin, V., Pushkar’ov., O., Shramenko I. (2012), Trytij u biosferi , Naukova dumka, Kyiv, UA.
  16. 16. Rumyinin ,V.G. (2003), Otsenka vliyaniya atomno-promyishlennogo kompleksa na podzemnyie vodyi i smezhnyie prirodnyie ob’ektyi (g. Sosnovyiy Bor Leningradskoy oblasti), S.-Peterb. un-ta, StPb, RU, 208 p.
  17. Arutjunjan, R., Bol’shov, L., Borovoj, A., Velihov, E., Kljuchnikov, A. (2010), Jadernoe toplivo v ob’ekte “Ukrytie” Chernobyl’skoj AES , Nauka, Moscow, RU, 240 p.
  18. Anisimov, A.I., Gayko, V.B., Konstantinov, E.A. (1989), Vliyanie kharaktera radioaktivnogo zagryazneniya na vybor sposobov dezaktivatsii oborudovaniya i pomeshcheniy 3-go energobloka ChAES , Chernobyl, 7(2), pp.3-19.
  19. Vasil’chenko, V. N., Zhigalov, Ja. A., Sandul, G.A., (2013), Zashhitnye bar’ery v jadernoj jenergetike: osnovnye prichiny degradacii , Nuclear energy and the environment, 1, pp.38–45.
  20. Vasil’chenko, V. N., Zhigalov, Ja. A., Sandul, G.A. (2013), Nekotorye scenarii degradacii betonnyh konstrukcij, ispol’zuemyh v kachestve zashhitnyh bar’erov v jadernoj jenergetike, Nuclear energy and the environment, 2, pp.22–30.
  21. Andrievskij, V.Z., Vasil’chenko, V.N., Zhigalov, Ja.A., Sandul, G.A. (2014), Nekotorye osobennosti jekspluatacii sistemy “kontejner+radioaktivnye othody” dlja hranenija i zahoronenija dolgosushhestvujushhih radioaktivnyh othodov, Nuclear energy and the environment, 1 (3), pp. 29 – 34.