25.4 MINERAL ADSORBENT OF TRITIUM BASED ON SAPONITE AND ZEOLITE

UDC 550.4 📖 Issue 25 / 2016 • 38-48 pages

 

А. Pushkarev, I. Rudenko, M. Koshelev, V. Skripkin, V. Dolin (Jr.), V. Prymachenko

YА. Pushkarev Ph.D. (Geol.-Min.), Principal Researcher SI «Institute of Environmental Geochemistry of NASUkraine», pushkarevigns@rambler.ru
I. Rudenko Doctoral Student SI «Institute of Environmental Geochemistry of NAS Ukraine», Irina_mihalovna@ukr.net
N. Koshelev Researcher, Frantsevich Institute for Problems of Materials Science of NAS Ukraine, silica-lum@ukr.net
V. Skripkin Researcher SI «Institute of Environmental Geochemistry of NAS Ukraine », PSRTL@rambler.ru
V. Dolin (Jr.) Engineer SI «Institute of Environmental Geochemistry of NAS Ukraine», vdolin@ukr.net
V. Prymachenko Junior Researcher SI «Institute of Environmental Geochemistry of NAS Ukraine», aleksandr_priima@mail.ru

Abstract

The paper is a result of the experimental research which was performed on the potential usage of saponite-zeolite composites as mineral membranes for adsorption of tritium out of tritiated water. It was found that the rate of filtration of the aqueous solution through a saponite-zeolite membrane decreased slightly during the first thirteen days. Afterwards the filtration process stabilized at a rate of 0.5-0.4 cm per day. A decrease of specific radioactivity of tritium in the filtration product by 17% after 41 days of filtration through an 80 mm saponite-zeolite membrane was observed. The filtration process happened in stages. Initially superficially adsorbed H2O moved into the aqueous solution from the membrane and was replaced by HTO, thus reducing specific radioactivity of the solution. Then the molecular exchange between HTO and H2O in the inter-layer space and isotope-hydrogen exchange in the structural position of OH-groups of the clay material came into effect. After 41 days of filtration the saturation of tritium in the composite was not observed. The researched composite can be used to decrease of specific radioactivity of tritium aqueous solutions by filtering it through a saponite-zeolite membrane.

 

Key words: saponite-zeolite composite, tritiated water, membrane, filtration, adsorption.

 

Article



Reference

  1. Pushkarev, O., Lytovchenko, A., Pushkarevа, R., Yakovlev, (2003), Dynamica nakopychennja trytiju v mineralnomu , Mineral Resource of Ukraine, 3, pp.42-45
  2. Lytovchenko, A., Pushkarev, a., Samodurov V. (2005), Assessment of the potential ability of phyllosilicates to accumulate and retain tritium in structural OH-groups, Mineral. Journal, 2, pp. 59-65.
  3. Lopez-Galindo, A., Fenoll Hach-Ali, P. Pushkarev, A. (2008),  Tritium redistribution between water and clay minerals, Applied Clay Science, 39, pp. 151–159.
  4. Pushkarev, О., Pryjmachenko, V. (2010), Vzajemodija trytijevoji vody z glynystymy mineralamy, Collected papers Institute of Environmental Geochemistry,18., 149-156.
  5. Stroitelnyje grunty i fundamenty, available at: http://www.groont.ru/electro/projecting/12.html .
  6. Melkior, D. Mourzagh, S. Yahiaoui, F. (2004), Diffusion of an alkaline fluid through clayey barriers and its effect on the diffusion properties of some chemical species, Applied Clay Science , 26, pp. 99– 107.
  7. Ebina Takeo, Rwaichi Minja1 J. (2004), Correlation of hydraulic conductivity of clay–sand compacted specimens with clay properties, Applied Clay Science, 26, pp.3– 12.
  8. Tien Y.M., Wu P.L, Chuang W.S., Wu L.H. (2004), Micromechanical model for compaction characteristics of bentonite–sand mixtures , Applied Clay Science, 26, pp. 489– 498.
  9. Pushkarev, A., Dolin, V., Prijmachenko, V., (2007), Kinetika izotopno-vodorodnogo obmena v bentonito-peschanoij smes, Collected papers Institute of Environmental Geochemistry,15.,  27-36.  
  10. Kaya, A., Durukan, , (2004), Utilization of bentonite-embedded zeolite as clay liner, Applied Clay Science, 25(1-2), pp. 83-91.
  11. Pushkarev, A., Prijmachenko, V., Zolkin, I., (2012), Vlastyvosti bentonito-zeolitovyh kompozitov shchodo vyluchennja trytiju z trytijevoji vody, Collected papers Institute of Environmental Geochemistry, 20, pp. 98-108.
  12. Janov V.P. Saponitovye gliny, available at: http://www.novotech.kiev.ua/?page_id=65 .
  13. Tarasevich, Y. (1988), Stroenije I himija poverhnosti sloistyh silikatov, Naukova Dumka, Kyiv, UA, 248 p.
  14. Krinari (2010), Litogenez i minerealogija neftenosnyh osadochnyh porod, University of Kazan, Kazan, RU, 64 p.
  15. Deer, Y., Howie, R., Zussman, J. (1966),  Rock-forming minerals, Mir, Moscow, RU, 3,  317 p.
  16. Marcelo J. Avena, Marcelo M. Mariscal, Carlos P. De Pauli (2003), Proton binding at clay surfaces in water, Applied Clay Science, 24, pp. 3–9.
  17. Földvári, M., (2011), Handbook of thermogravimetric system of minerals and its use in geological practice,Occasional Papers of the Geological Institute of Hungary, 213, 179 p.
  18. Grechanovska, O. (2011), Mineralogija ta umovy utvorennja rodovyshch porodoutvorujuchyh zeolitiv Zakarpattja, Kiev, UA, 227 p.
  19. Denisov, N. (1957), Inzhenernaja geologija i gidrogeologaja, Gosstrojitehizdat, Moscow, RU, 366 p.