25.6 COMPOSITE ADSORBENT BASED ON POLYPROPYLENE FIBERS WITH DEPOSITED LAYER OF POTASSIUM-NICKEL FERROCYANIDE FOR CONCENTRATION OF 137CS FROM CONTAMINATED WATERS

UDC 502.65:621.039.75:628.3 📖 Issue 25 / 2016 • 56-63 pages

 

Yu. Bondar, T. Koromyslichenko

Yu. Bondar Ph. D. (Geol.-Min.), Senior Researcher of the SI«Institute of Environmental Geochemistry of the NASU», juliavad@mail.ru
T. Koromyslichenko Principal Specialist of the M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NASU

Abstract

Novel composite adsorbent for 137Cs concentration from contaminated waters was synthesized by deposition of K-Ni ferrocyanide layer on the modified polypropylene fibers’ surface. A two-stage synthesis was applied: radiation-induced graft polymerization of acrylic acid monomer onto the surface of polypropylene fibers, followed by in situ formation of potassium nickel ferrocyanide layer within the grafted chains. Data of scanning electron microscopy, X-ray diffraction, and infrared spectroscopy confirmed the formation of ferrocyanide layer on the fibers’ surface. The synthesized sample was tested as adsorbent for selective removal of 137Сs from the model solution with high ratio of 137Сs ions to the sum of K and Na ions (1:2х109). The calculated values of distribution coefficient (9.4 102 cm3/g) and adsorption degree (72.4 %) testify to the high efficiency of the synthesized composite fibers in 137Cs removal from contaminated waters with high concentration of competitive ions.

 

Key words: 137Cs, liquid radioactive waste, composite adsorbent, polypropylene fibers, potassium-nickel ferrocyanide, selectivity.

 

Article



Reference

  1. Klepus, V. H., Sytnyk, Iu.M., Kahlian, O.Ye. (2001), Radioekolohichne vyvchennia vodoim miskoi zony Kyieva, Naukovi zapysky. Seriia: biolohiia, spets. vypusk: hidroekolohiia,  4(15), pp. 17-18
  2. Kuzmenko, I., Hudkov, D. I. Pankov, I. V. (2001), Radionuklidy ta yikh ekolohichne znachennia u vodoimakh Ukrainy, Naukovi zapysky. Seriia: biolohiia, spets. vypusk: hidroekolohiia, 4(15), pp. 19-21.
  3. Tananaev, I. V, Seifer, G. B., Kharitonov, Iu. Ia. (1971), Khimiia ferrotsianidov , Nauka, Moscow, RU, 320 p.
  4. Chapiro A. (1962), Radiation Chemistry of Polymeric Systems, New York, USA, 712 p.
  5. Kato, K., Uchida, E., Kang, E. (2003), Polymer surface with graft chains, Prog. Polym. Sci., 28(2), pp. 209-259.
  6. Bhattacharya, A., Misra, B.N. (2004), Grafting: a versatile means to modify polymers. Prog. Polym. Sci, 29(8), pp. 767–814.
  7. Kabanov, V. Ya., Feldman, V. I., Ershov, B. G. (2009), Radiatsionnaia khimiia polimerov, Khimiia vys.energii, 43(1), pp. 5-21.
  8. Nasef, М., Güven, O. (2012), Radiation-grafted copolymers for separation and purification purposes: Status, challenges and future directions, Prog. Polym. Sci., 37(12) pp. 1597-1656.
  9. Bondar, , Khan D. Kh. (2012), Optymizatsiia uslovii radiatsionno-khimicheskoho sinteza polipropilenovykh volokon s karboksilnymi gruppami, Dopovidi NANU, 9, pp.111-117.
  10. Nakamoto K. (1991), Infrakrasnye spektry neorganicheskikh i koordinatsionnykh soedynenii , Myr, Moscow, RU, 536 p.
  11. Chang, С-Y., Chau, L-K., Hu, W-P., (2008), Nickel hexacyanoferrate multilayers on functionalized mesoporous silica supports for selective sorption and sensing of cesium , Micropor. Mesopor. Mat, 109(1-3), pp. 505–512
  12. Ennan, , Shykhaleeva, G. N., Babinets, S. K. (2006), Osobennosty ionno-solevogho sostava vody Kuialnitskogo limana , Visnyk ONU. Khimiia, 11(1-2), pp. 67-74.