УДК 553.078

Ярощук М. А., Вайло А. В.

ГУ «Институт геохимии окружающей среды НАН Украины»

РОЛЬ ПРОЦЕССОВ ГРАНИТИЗАЦИИ В ОБРАЗОВАНИИ ТОРИЙ-УРАНОВОГО ОРУДЕНЕНИЯ МЕЖБЛОКОВЫХ ШОВНЫХ ЗОН УКРАИНСКОГО ЩИТА.

Рассмотрены геологическое строение, минеральные ассоциации, этапы и стадии формирования Лозоватского, Южного и Калиновского торий-урановых месторождений Алексеевского рудного поля Голованевской шовной зоны. Доказывается, что особенности геодинамической обстановки межблоковых шовных зон определили своеобразие их металлогении, в частности, образование изученных торий-урановых месторождений. Представляется возможной временная и генетическая связь дорудной, рудной и пострудной стадий с процессами ультраметаморфизма с образованием разных продуктов гранитизации. Описаны процессы концентрации тория в торийсодержащих минералах. Дан прогноз наиболее вероятного развития и локализации кремне-калиевых метасоматитов, вмещающих торий-урановое оруденение в МШЗ Украинского щита.

Введение

Украинского (Белоцерковско-Одесская, Межблоковые шовные зоны щита Орехово-Павлоградская) Криворожско-Ингулецкая, мегаструктурами, являются отличающимися от сопредельных мегаблоков подкоровым и коровым строением и геодинамикой развития. Особенности геодинамической обстановки обусловлены своеобразием вулканогенно-осадочной седиментации и магматизма, высокотемпературным прогрессивным метаморфизмом, многоэтапной гранитизацией, широким проявлением процессов диафтореза и тектоно-магматической активизации.

Межблоковые шовные зоны (МШЗ) субмеридионального простирания ограничены долгоживущими глубинными разломами. Внутреннее геологическое строение МШЗ определяется типом глыбовой складчатости [1, 2], представленной разновеликими фрагментами (глыбами, ступенями) раздробленного палеоархейского фундамента, ограниченными разломами и разделенными синклинальными структурами, выполненными метаморфическими и ультраметаформическими неоархей-нижнепротерозойскими породами. Породы палеоархейского фундамента лучше всего сохранились в центре крупных глыб и ступеней (в несколько десятков км). В периферической части, в зонах несогласия (сочленения) их с породами верхнего структурного яруса, породы нижнего структурного яруса существенно переработаны, диафторированы, повторно гранитизированы.

Особенности геодинамического развития МШЗ определяют своеобразие их металлогении. В шовных зонах установлены хром-никелевые руды, связанные с процессами раннего основного — ультраосновного магматизма, графитовые руды, обусловленные процессами литогенеза и метаморфизма, торий-урановое оруденение, связанное с процессами гранитизации, а также многочисленные проявления полиметаллов в зонах тектоно-магматической активизации.

Торий-урановое оруденение установлено в Алексеевском рудном поле на Южном, Калиновском и Лозоватском месторождениях в юго-восточной части Белоцерковско-Одесской зоны. К этому типу оруденения относится Дибровское месторождение в северовосточной части Орехово-Павлоградской зоны.

Алексеевское рудное поле приурочено к зоне несогласия (сочленения) крупной дугообразной палеоархейской Первомайско-Константиновской гряды протяженностью до 80 км, состоящей из Ольшанской, Конецпольской, Константиновской глыб, с Ташлыкской синклиналью (рисунок). В рудном поле породы представлены графит-биотит-гранатовыми гнейсами с кордиеритом бугской серии, инъекционными грубополосчатыми мигматитами,

агматитами, аплито-пегматоидными гранитами, пегматитами, диафторированными породами днестровско-бугской серии, чарнокитизированными эндербитами, разнообразными тектонитами (катаклазитами, бластомилонитами, зонами будинажа).

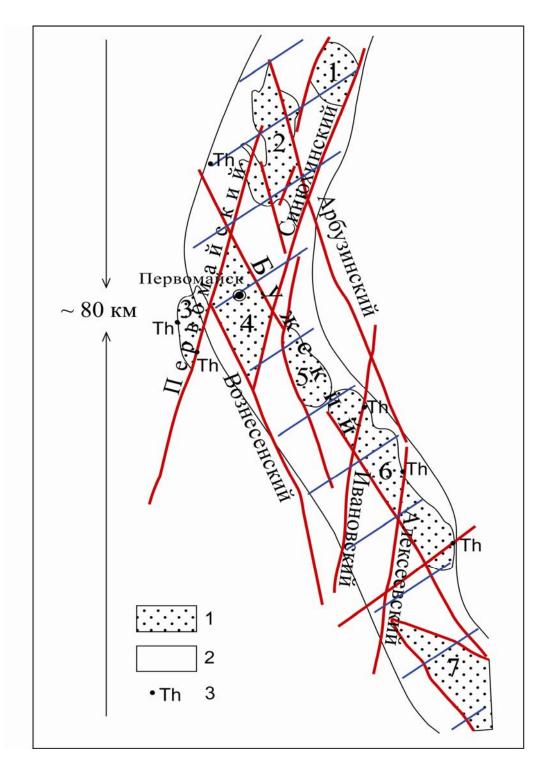


Рисунок. Ольшанско -Первомайско -Константиновская гряда.

- 1 породы выступов палеоархейского фундамента; 2 породы неоархейского структурного яруса. Выступы палеоархейского фундамента: 1–Добрянский; 2–Ольшанский;
 - 3 Конецпольский; 4 Первомайский; 5 Мигийский; 6 Константиновский;
 - 7 Вознесенский. 3 ториепроявления

Рудные тела залегают в околорудных кремне-калиевых метасоматитах – микроклинитах, вторичных кварцитах.

Торий-урановое оруденение является комплексным и представлено такими минеральными ассоциациями, формировавшимися в пять стадий трёх этапов [3] (табл. 1):

- ранняя редкоземельная и урано-торианит редкоземельная дорудной и предрудной стадий рудоподготовительного этапа;
 - уранинит-циртолит-молибденитовая первой стадии основного рудогенного этапа;
- брёггерит-уранинитовая и торогуммит-полисульфидная второй стадии основного рудогенного этапа;
- гидронастуран-сульфидная, ураносиликатная, пирит-коффинитовая пострудного этапа.

В околорудных и рудных зонах повышены содержания редкоземельных элементов (Се, La), Mo, Pb, Bi, As, Zr, Cu, Ni, Co. Концентраторами тория и редких земель в рудах являются ксенотим, цералит (ThO₂ до 1,0%), ортит (ThO₂ до 1,0%), главным образом, монацит (ThO₂ = 6-10%), торийсодержащие урановые минералы – торогуммит (ThO₂ = 8,9%), брёггерит (ThO₂ = 11,0%); урановые минералы – уранинит, гидронастуран, коффинит.

Этапы и стадии формирования комплексного редкоземельно-торий-уранового оруденения (ранняя щелочная, кислотная, поздняя щелочная) отражают связь его с процессами гранитизации (ультраметаморфизма) в зонах сочленения (несогласия) складчатоглыбовых структур и гранитообразования в зонах разломов [2, 4] (табл. 2).

Первый этап (2300-1900 млн. лет) связан с чарнокитизацией и диафторезом эндербитов (2300-2250 млн. лет), образованием грубополосчатых мигматитов, порфировидных, трахитоидных и теневых гранитов (2250-1900 млн. лет). Второй этап связан с образованием кремне-калиевых метасоматитов, аплито-пегматоидных гранитов и пегматитов (1900-1640 млн. лет.). Третий этап обусловлен процессами тектоно-магматической активизации субмеридиональных и северо-восточных разломов (1610-1570 млн. лет).

Связь торий-уранового оруденения с разными этапами гранитизации прослеживается также по изменению торий-уранового отношения в монацитах разных продуктов гранитизации.

Накопление тория происходило на дорудной стадии при процессах диафтореза, чарнокитизации и мигматизации палеоархейских пород. Торий-урановое отношение в монацитах чарнокитов и грубополосчатых мигматитов соответственно составляет 18, 32 и 60, 64 (табл. 3).

На рудогенном этапе накопление тория сменилось накоплением урана в собственно урановых минералах при процессах региональной гранитизации неоархейских пород бугской серии с образованием порфировидных (Th/U=11, 33, трахитоидных (Th/U=10, 19) и теневых (Th/U=11, 57) гранитов. На пострудном этапе в субмеридиональных и северо-восточных разломных зонах в катаклазированных пегматоидных гранитах (Th/U=17,4) и пегматитах (Th/U=30, 26) продолжалось накопление как урана, так и тория, входивших в состав монацита, торогуммита и брёггерита. Источники рудного вещества были, вероятно, гетерогенными, главным образом, глубинными. Часть рудных элементов, возможно, имела коровую природу, могла извлекаться из рудовмещающих пород, повергшихся метаморфизму и гранитизаци. Так, например, источником части тория могли быть графитсодержащие гранат-биотитовые гнейсы с кордиеритом, протолитами которых были аркозо-пелиты мелководных фаций, обогащенные углеродом, кластогенным уран- и торийсодержащими минералами и сорбционными формами этих элементов. Образование торий-уранового оруденения является характерным для межблоковых шовных зон и отражает наиболее ранний этап накопления тория и урана в литосфере.

Кроме известных месторождений торий-урановых руд Алексеевского рудного поля, в Белоцерковско-Одесской и других межблоковых зонах Украинского щита установлены,

Збірник наукових праць Інституту геохімії навколишнього середовища 2014 випуск 23

Таблица 1. Урановорудные ассоциации Южного месторождения Украинского щита.

Урановорудные ассоциации	Минеральный состав и формы распределения минералов (элементыпримеси)	Рудовмещающие породы	Этапы	Стадии метосоматоза и оруденения	Время околорудных процессов метосоматоза и рудообразования (млн. лет)
Ранняя редкоземельная	Редкая сингенетичная вкрапленность монацита, циркона, ортита, уранинита	Чарнокиты, грубополосчатые мигматиты, трахитоидные и теневые граниты	отови- ый	Дорудная	2300 – 1900
Ураноторианит - редкоземельная (иногда с апатитом)	Гнездовая вкрапленность уран- и торийсодержащих циртолита, монацита, ксенотима, цералита, ортита (P, Pb, Ce, La, Y)	Биотитизированные и микроклинизированные пегматоидные граниты	Рудоподготови- тельный	Предрудная	1900 – 1800
Уранинит-циртолит - молибденитовая	Гнездовые и прожилковые выделения циртолита, реже уранинита, молибденита (Pb, Zr, Y, Bi, Sn)	Микроклиниты, пегматоидные граниты, кремне-калиевые и магнезиальные метасоматиты с пироксеном		Первая рудогенная	
Брёггерит-уранинит- кварцевая	Псевдоморфозы уранинита по редкоземельным минералам; вкрапленнсть брёггерита, редкоземельных минералов (Zn, As, пирит, пирротин)	Вторичные кварциты зон окварцевания	Рудогенный	Вторая	1800 – 1640
Торогуммит- полисульфидная с самородным висмутом	Псевдоморфозы торогумита по ураниниту; иногда — ортиту, цералиту, циртолиту. Прожилки в тектонитах (Pb, Bi, As, Mo, Th, Ce, La, Y, Sb, самородный висмут, халькопирит)	апопегматитовых тектонитов (катаклазитов, бластомилонитов, тектонобрекчий);	Py	рудогенная	
Гидронастуран - сульфидная	Псевдоморфная и прожилковая форма выделения гидроксида урана в уранините (Zn, Pb, Ni, Co, Cu)	Зоны катаклаза и трещиноватости в рудовмещающих породах и рудах	Пострудный	Пострудная	1610 – 1570

Таблица 2. Этапы развития Побужского района Белоцерковско-Одесской шовной зоны.

Этапы	Структуры	Процессы	Возраст, млн. лет	
			min	max
Палеоархей	Глыбы древнего основания	Процессы прогрессивного метаморфизма пород палеоархея (днестровскобугской серии)	-	3300
Неоархей	Северо-западные разломы; разломы, ограничивающие древние глыбы	Процессы магматизма начальных этапов развития геосинклинали	2400	2600
	Северо-западные синклинальные структуры	Прогрессивный метаморфизм пород неоархея (бугской серии: метабазитов, гнейсов)	1900	2620
Палеопротерозой	Северо-западные антиклинальные структуры; внешние зоны глыб	Региональная гранитизация пород бугской серии, образование грубополосчатых мигматитов, теневых гранитов	1900	2250
	Внутренние части зон сочленения глыб	Диафторез (амфиболизация, биотитизация) пород палеоархея	1950	2160
	Внутренние части зон сочленения глыб	Гранитизация пород палеоархея (теневые чарно-киты, грубополосчатые мигматиты)	2250	2300
Средний протерозой	Северо-западные и северовосточные разломы	Окварцевание, биотитизация, амфиболизация; внедрение мясокрасных гранитов	1800	1900
	Субмеридиональные разломы	Амфиболизация, биотитизация, окварцевание, приразломная гранитизация	1640	1770
Верхний протерозой	Субмеридиональные разломы	Внедрение жильных амфиболитов и плагио- гранитов начального этапа развития, диафторез	1570	1610
	Субмеридиональные разломы	Диафторез; внедрение жильных амфиболитов заключительного этапа развития	1100	1320

в разной степени, изученные площади, на которых находятся проявления различных стадий кремне-калиевого метасоматоза и некоторых рудных ассоциаций, характерных для торий-уранового оруденения, что расширяет его перспективы и служит поисковыми критериями. В Белоцерковско-Одесской зоне — это Завальевская, Сквирско-Тетиевская, Звенигородская, Богуславская, Гайворонская площади. В Криворожско-Ингулецкой зоне — Казанковско-Желтореченская, Лозоватская, Каменская площади, Степовское рудопроявление Бобринецко-Розановской площади, ранняя торий-урановая минерализация Михайловского месторождения. В Орехово-Павлоградской зоне — Васиновская и Волчанская площади.

Таблица 3. Содержание урана и тория в монацитах гранитоидов Побужья.

Количество	Порода	Структурные	Содержание, %		Th/U
проб		положения	U	Th	
3	Чарнокиты	Внутренние зоны	0, 34	6, 23	18, 32
	_	сочленения			
7	Грубополосчатые	Внутренние зоны	0, 14	8, 49	60, 64
	мигматиты	сочленения			
3	Грубополосчатые	Внешние зоны	0, 49	10, 49	21, 41
	мигматиты	сочленения			
5	Граниты	Синклинали северо-	0, 58	6, 57	11, 33
	порфировидные	западного простирания			
6	Граниты	Синклинали северо-	0, 78	7, 95	10, 19
	трахитоидные	западного простирания			
5	Граниты теневые	Синклинали северо-	0, 70	8, 10	11, 57
		западного простирания			
7	Граниты	Внешние зоны	0, 40	6, 96	17, 40
	пегматоидные,	сочленения,			
	пегматиты	синклинали северо-			
		западного простирания			
6	Пегматиты,	Субмеридиональные	0, 47	7, 98	16, 98
	мигматиты, граниты	зоны разломов			
	катаклазированные				
5	Красные граниты	Северо-восточные зоны	0, 31	9, 38	30, 26
	пегматоидные	разломов			
3	Граниты	Субмеридиональные	0, 32	5, 6	17, 50
		зоны разломов			

Выводы.

Установлена возможная временная и генетическая связь дорудной, рудной и пострудной стадий с процессами ультраметаморфизма с образованием разных продуктов гранитизации. Первый, дорудный, этап связан с чарнокитизацией и диафторезом пород раннеархейского фундамента, образованием грубополосчатых мигматитов, порфировидных, трахитоидных и теневых гранитов. Второй, рудный, этап связан с постмагматическими процессами образования кремне-калиевых метасоматитов, аплито-пегматоидных гранитов и пегматитов. Третий, пострудный, этап был обусловлен процессами тектоно-магматической активизации субмеридиональных и северо-восточных зон разломов.

^{1.} *Ярощук Э. А.* Докембрий Нижнего Побужья. //Геохронология докембрия Украины. Киев: Наук. думка, 1965.- с. 69-83

^{2.} *Ярощук Э. А.* Геологическое строение, геохронология и история развития докембрия Нижнего Побужья. Автореферат дисерт. на соиск. нучн. степени канд. наук. Киев. 1970.- 31 с.

^{3.} Генетические типы и закономерности размещения урановых месторождений Украины. Киев: Наук. думка, 1995.- 395 с.

^{4.} *Ярощук* Э. А., Елисеева Г. Д. Абсолютный возраст и история формирования докембрия Южного Буга. //Вопросы датировки древнейших (катаархейских) геологических образований и основных пород. Киев: Наук. думка, 1967.- с. 27-35.

Ярощук М.О., Вайло О.В. РОЛЬ ПРОЦЕСІВ ГРАНІТИЗАЦІЇ В УТВОРЕННІ ТОРІЙ-УРАНОВОГО ЗРУДЕНІННЯ МІЖБЛОКОВИХ ШОВНИХ ЗОН УКРАЇНСЬКОГО ЩИТА.

Особливості геодинамічної обстановки міжблокових шовних зон визначили своєрідність їх металогенії, зокрема, утворювання торій-уранових родовищ, які вивчені у Алексіївському рудному полі Голованівської шовної зони. Наведено можливий часовий генетичній зв'язок дорудної, рудної і пострудної стадій з процесами ультраметаморфізму з утворенням різних продуктів гранітизації. Описані процеси концентрації торію у торійвміщуючих мінералах. Дан прогноз найбільш імовірного розвитку кремне-калієвих метасоматитів, що містят торій-уранове зруденіння у міжблокових шовних зонах Українського щита.

Yaroshchuk M. A., Vailo A. V. THE ROLE OF GRANITIZATION IN FORMATION OF THORIUM-URANIUM MINERALIZATION IN INTERBLOC SUTURAL ZONE OF UKRAINIAN SHIELD.

Specific features of interblock sutural zone geodynamic situation determined the features of interblock sutural zone metallogeny, including formation of thorium-uranium deposits which are the best-studied areas in Olexiivsky ore field of Golovanivska sutural zone. The article presents geological composition, mineral associations and stages of formation of Lozovatsky, Pivdenne and Kalynivske thorium-uranium deposits. Possible temporal and genetic connection of pre-ore, ore and post-ore stages with ultrametamorphism processes and formation of various granitization products is discussed. Processes of concentration of thorium in thorium-bearing minerals are discussed. Promising areas of development of silicic-potassic metasomatites containing thorium-uranium mineralization in interblock sutural zones of Ukrainian shield are suggested.