1(29).2 PHASE FORMATION PROCESSES IN STEEL – BENTONITE INTERFACE IN THE CONDITIONS OF RADIOACTIVE WASTE GEOLOGICAL REPOSITORY EVOLUTION

UDC 621.039 : 754.716 : 544.7 • 📖 Issue 1(29)/ 2019 • 13 — 23 pages

Geohìm. tehnog. (2019) 1:13-23
https://doi.org/10.15407/geotech2019.29.013

Shabalin B.,  Lavrynenko O.,  Buhera S., Mitsiuk N.

Shabalin. B. D. Sc. (Geol.-Min.), Senior Research Fellow, Head of department State Institution «Institute of Environmental Geochemistry of the NAS of Ukraine, b_shabalin@ukr.net, https://orcid.org/0000-0002-6425-5999.
Lavrynenko O.
D. Sc. (Chem.), Frantsevych Institute of Material Science Problems of NAS of Ukraine, alena-lavry@yandex.ru
Buhera S.
Research Assistant, State Institution «Institute of Environmental Geochemistry of the NAS of Ukraine, sergii.bugera@gmail.com
Mitsiuk N.
Research Assistant, State Institution «Institute of Environmental Geochemistry of the NAS of Ukraine, popov_67@voliacable.com

Abstract

The review work presents the analysis of up to date publications, including original ones, devoted to studying of nano-sized mineral phase formation processes on the interface surface of a bentonite buffer, mineral composition of which contains montmorillonite (70-90 mass%), and a steel container in the conditions of radioactive waste geological repository. Probable changes of mineralogical, geomechanical and hydraulic properties of bentonite during evolution of geological disposal have been considered. It is expected that ferric saponite, berthierine or chlorite may be formed as a result of phase transformations of the buffer material. It has been demonstrated that saponitization of the buffer will not significantly decrease its isolation properties due to ability of saponite to swell and similarity of its physicochemical properties to montmorillonite, while montmorillonite illitization may cause buffer insulating properties loss. Characterization of the germinal structures of Green Rust and Fe- ferrihydrite which can be formed on the surface of a steel container under geological disposal conditions, and contribute to radionuclides fixation on the steel-bentonite interface is presented. It is emphasized that it is necessary to carry out complex experimental researches, which will allow prediction of bentonite buffer long-term stability in geological repository conditions, taking into account mineralogical-geochemical processes caused by corrosion of steel containers. A change of physicochemical conditions, mineralogical, geomechanical and hydraulic properties of the bentonite during geological disposal facilities operation and closure which can lead to decrease of buffer insulating properties is considered. Particular attention need to be paid for the analysis of the processes, taking place on the bentonite buffer   steel container interface. It has been shown that formation on the surface of old germinal structures of Green Rust and ferrihydride and their phase transformations into sorption-active phases of ferrum oxyhydroxides and oxides can become an additional mechanism for fixation of mobile forms of radionuclides and transfer them to a less mobile and toxic state by means of reduction. During contact of the ground-water saturated bentonite buffer with the steel surface, mineralogical changes of the bentonite are directed to processes of saponitization and beidelitization. While saponitization is not critical to buffer isolating properties because of the ability of saponite to swell, partial or complete formation of beidelite substantially worsens them. One of the main processes that can become critical for the bentonite isolation properties is illitization of montmorillonite, the rate of which depends on temperature, chemical composition of the aqueous medium (pH and alkaline cation concentration, especially K+), degree of bentonite saturation with water, and the ratio between dispersion phase and dispersion medium. While a predictive estimate shows impossibility of buffer illitization due to low temperature, the use of external building materials, in particular, cements may shift the balance and lead to transformation of the bentonite to illite. The article emphasizes the necessity of carrying out complex experimental researches that will allow to predict the long-term stability of the bentonite buffer in the conditions of geological repository existence, taking into account mineralogical-geochemical processes caused by corrosion of steel containers.

Keywords: bentonite, steel corrosion, steel-bentonite interface, phase bentonite changes, illitization, Green Rust, ferrihydrite

Article



Reference

  1. Lavrynenko O.M., Prokopenko V.A., Lebovka N.I., Mamunia S.V. (2008), Journ., Т. 70, №3, RU, pp. 1–8.
  2. Chuhrov F.V., Ermilova L.P., Gorshkov A.I. et al.(1975) Gipergennyie okislyi zheleza v geologicheskih protsessah, Nauka, Moskov, RU, 207 p.
  3. Holdberg V.M., Skvortsov N.P. (1986) Pronitsaemost i filtratsiya v glinah, Nedra, Moskov, RU, 160 p.
  4. Drits V.A. Kossovskaya A.G. (1990) Glinistyie mineralyi: smektityi, smeshanosloynyie obrazovaniya: Monografiya, Nauka, Moskov, RU, 214 p.
  5. Lavrynenko O. M. (2009), Nanostrukturnoe materialovedenie, № 3, RU, pp. 15–40.
  6. Lavrynenko O. M. (2009), Nanostrukturnoe materialovedenie, № 4, RU, pp. 16–53.
  7. Ultra- i mikrodispersnoe sostoyanie mineralnogo veschestva (2005), Nauka, St.Petersburg, RU, 581 p.
  8. Shabalin B.H., Lavrynenko O.M., Kosorukov P.O., Buhera S.P. (2018), Journ., T.40 – №.4, Kyiv, UA, pp. 65-78. https://doi.org/10.15407/mineraljournal.40.04.065
  9. Bennett D.G., Gens R. (2008), J. Nuclear Materials, Vol. 379. pp. 1-8. https://doi.org/10.1016/j.jnucmat.2008.06.001
  10. Burleson D. J., Penn R. L (2006), Langmuir, V. 22, pp. 402–409. https://doi.org/10.1021/la051883g
  11. Abdelmoula M., Refait Ph., Drissi S. H. et al.(1996), Sci., V. 38, N 4., pp. 623–633. https://doi.org/10.1016/0010-938X(95)00153-B
  12. Cornell R. M., Schwertmann (2003), The iron oxides: structure, properties, reactions, occurrence and uses / R. M. Cornell, U. Schwertmann 2th ed. Wiley-VCH, Weinheim, Germany, 2003. – 703 p. https://doi.org/10.1002/3527602097
  13. Corrosion and alteration of nuclear materials. Paris: CEA, 2010. 160 p.
  14. Curti E., Wersin P. (2009), Assessment of Porewater Chemistry in the Bentonite Backfill for the Swiss SF //HLW Repository. Nagra. Technical report 02-09. 78 p.
  15. Benali O., Abdelmoula M., Refait Ph., Genin  -M.R.(2001), Geochim. Cosmochim. Acta., V. 65, N 11. – pp. 1715–1726. https://doi.org/10.1016/S0016-7037(01)00556-7
  16. Lair V., Antony H., Legrand L., Chausse A. (2006), Sci. V. 48, pp. 2050–2063. https://doi.org/10.1016/j.corsci.2005.06.013
  17. Flynn C. M. (1984), Rev., V. 84, – pp. 31–41. https://doi.org/10.1021/cr00059a003
  18. Refait Ph., Benali O., Abdelmoula M., Genin J.-M. R. (2003) Sci., V. 45, pp. 2435–2449. https://doi.org/10.1016/S0010-938X(03)00073-8
  19. Fukaya Y. Akashi M. (1999), Res. Symp. Proc., Vol. 556, pp. 871-878. https://doi.org/10.1557/PROC-556-871
  20. Geological dispousal. A review of the development of bentonite barriers in the KBS-3V disposal concept. (2014), NDA Technical Note no. 21665941, 84 p.
  21. Sumoondur A., Shaw S., Ahmed , Benning L.G.(2008), Mineral. Magazine., V. 72, N 1, pp. 201–204. https://doi.org/10.1180/minmag.2008.072.1.201
  22. Ishikawa H., Shibata M., Fujita T.(1994), Journal of the Clay Science Society of Japan, V.34, pp. 149–
  23. Kamei G., Yusa Y., Sasaki N. (1992), Materials Research Society Symposium Proceedings, 257, pp.505–512.
  24. Karnland O., Olsson S., Nilsson U. (2006), Mineralogy and sealing properties of various bentonites and smectite–rich clay minerals // SKB Technical Report TR-06-30.
  25. King F.(2008), Corrosion of carbon steel under anaerobic conditions in a repository for SF and HLW in Opalinus Clay. Technical Report 08-12. Wettingen: Nagra, 44 p.
  26. King F. Kolar M. (2009), Theory Manual for the Steel Corrosion Model Version 1.0 Report No.: NWMO TR-2009-07.
  27. King F., Shoesmith D.W. (2010),In “Geological repository systems for safe disposal of spent nuclear fuels and radioactive waste”. J. Ahn, M.J. Apted (Eds). Cornwall, UK: Woodhead Publishing Ltd,. pp. 379–420. https://doi.org/10.1533/9781845699789.3.379
  28. Kumpulainen S., Kiviranta L., Carlsson T., Muurinen A., Svensson D., Sasamoto H., Yui M., Wersin P., Rosch D. (2010), Long-Term Alteration of Bentonite in the Presence of Metallic Iron. // POSIVA .Working Report 2010-71. – 98 p.
  29. Laine H., Karttunen P. (2010), Long-Term Stability of Bentonite: A Literature Review (Working Report 2010-53), Olkiluoto, Posiva OY, Finland, 132 p.
  30. Lavrynenko O.M., Korol Ya.D., Netreba S.V., Prokopenko V.A.(2010), Khimiia, fizyka ta tekhnolohiia poverkhni, T. 1, № 3, pp. 338–342.
  31. Lewis D. G. (1997), Geoecol., V. 30, pp. 345–372.
  32. Meunier A, Velde B., Griffault L. (1998), Clay Miner., V.33, pp. 187 – https://doi.org/10.1180/000985598545462
  33. Proceedings of the International Workshop on Bentonite-Cement Interaction in Repository Environments 14-16 April 2004, Tokyo, Japan. NUMOTechnical Report No. NUMO-TR-04-05.
  34. , LönnerbergB. (2008), International ConferenceUnderground Disposal Unit Design & Emplacement Processes for a Deep Geological Repository.6-18 June 2008, Prague, pp. (20)1-12.
  35. Project Opalinus Clay Safety Report. Demonstration of disposal feasibility for spent fuel, vitrified high-level waste and long-lived intermediate-level waste. Technical report 02-05. Wettingen: NAGRA, 2002. 472 p.
  36. Refait Ph., Genin J.-M.R. (1997), Sci., V. 39, pp. 539–553. https://doi.org/10.1016/S0010-938X(97)86102-1
  37. Rodriguez M.A.(2014), JOM., Vol. 66, № 3, pp. 503-525. https://doi.org/10.1007/s11837-014-0873-7
  38. Samper J., Lu C., Montenegro(2008), Phys.Chem.Earth., V. 33, pp. 306–316. https://doi.org/10.1016/j.pce.2008.10.009
  39. Schwertmann , Cornell R. M. (2000), Compl. Rev. and Ext. Ed. Wiley-VCH, Wienheim, – p. 185.
  40. Schwertmann U. Fechter H. (1994), Clay Minerals, V. 29, pp. 87–92. https://doi.org/10.1180/claymin.1994.029.1.10
  41. Shestopalov V.M., Shybetskyi Iu.A., Proskura M.I., Zinkevich L.I., Temny R.G. (2016), In: International Approaches for Nuclear Waste Disposal in Geological Formations: Geological Challenges in Radioactive Waste Isolation—Fifth Worldwide Review”, Editors: B. Faybishenko, J. Birkholzer, D. Sassani, and P. Swift, LBNL-1006984, DOI 10.2172/1353043.
  42. Long-Term Safety for KBS-3 Repositories at Forsmark and Laxemar – a First Evaluation (Main Report of the SR-Can Project). SKB Technical Report TR-06-09. Svensk Kärnbränslehantering AB, Stockholm, Sweden. – 2006.
  43. Smart N.R., Blackwood D.J., Werme L.O. The anaerobic corrosion of carbon steel and cast iron in artificial groundwaters. SKB Technical Report TR-01-22. 2001., Smart R.N., Rance A.P., Werme L.O. (2004), MRS Symp. Proc., 807, pp. 441-446.
  44. Genin J.-M. R., Abdelmoula M., Ruby Ch., Upadhyay Ch. (2006), R.Geosci., V.338, pp. 402–419. https://doi.org/10.1016/j.crte.2006.04.005
  45. Stammoze D., Vokal A.(2012) Preliminary interpretation of experimental results on gas generation. FORGE Report D2.3-R, 34 p.
  46. Simon L., François M., Refait Ph., Renaudin G. at all. (2003), St. Sci., V. 5, Is. 2, pp. 327–334. https://doi.org/10.1016/S1293-2558(02)00019-5
  47. Tamura H. (2008), Corrosion Science, V. 50,pp.1872–1883. https://doi.org/10.1016/j.corsci.2008.03.008
  48. Taniguchi N., Honda A., Ishikawa H. (1998), MRS Symp. Proc., Vol. 506, pp. 495-501. https://doi.org/10.1557/PROC-506-495
  49. The management system for the disposal of radioactive waste, June 2008, IAEA Safety Standards Series N°. GS-G-3.4, Vienna.
  50. Tronc E., Belleville P., Jolivet J. P., Livage J. (1992), , V. 8, pp. 313–319. https://doi.org/10.1021/la00037a057
  51. , Thomas H.R., Stratos P. (2017), Geosciences, V.7, N 3, pp.53–57. https://doi.org/10.3390/geosciences7030053
  52. Trolard F. (2006), C. Geosci., V. 338, pp. 1158–1166. https://doi.org/10.1016/j.crte.2006.08.003
  53. Tsutomu S., Takashi, M., Hiroshi I., Toshihiko O. (1995), Res. Soc. Symp. roc., 353, pp. 239–246.
  54. Turnbull A. (2009) A review of the possible effects of hydrogen on lifetime of carbon steel nuclear waste canisters. Technical Report 09-04, Nagra, Wettingen, 51 p.
  55. Pozas R., Ocana M., Morales M. P., Serna C. J. (2002), Coll. Interf. Sci., V. 54, pp. 87–94. https://doi.org/10.1006/jcis.2002.8568
  56. Wersin P., Birgersson M., Olsson S, Karnland O., Snellman M. (2007) Impact of Corrosion-Derived Iron on the Bentonite Buffer Within the KBS-3H Disposal Concept – the Olkiluoto Site as Case Study, POSIVA. Working Report 2007-11, 78 р.
  57. Wersin P., Johnson L.H., McKinley G. (2006), Physics and Chemistry of the Earth, Parts A/B/C, V.32, N 8-14, pp. 780–788. https://doi.org/10.1016/j.pce.2006.02.051
  58. Wilson J., Cressey G., Cressey B., Cuadros J., Vala Ragnarsdottir K., Savage D., Shibata M. (2006), Geochimica et Cosmochimica Acta, V. 70, pp. 323–336. https://doi.org/10.1016/j.gca.2005.09.023
  59. Xu Q.F., Wang W., Pang X.L. et al. (2014), Corrosion Engineering, Science and Technology, Vol. 49, № 6, pp. 480-484. https://doi.org/10.1179/1743278214Y.0000000191
  60. Yoshikawa H., Gunji E., Tokuda M. (2008), Nucl. Mater, Vol. 379, pp. 112-117. https://doi.org/10.1016/j.jnucmat.2008.06.009