1(29).6 MORPHOMETRIC-MINERALOGICAL PECULIARITIES OF AIR DUST POLLUTION IN THE IMPACT ZONE OF TRYPILSKA TPP.

UDC 550:462:57.045 • 📖 Issue 1(29)/2019 • 46-56 pages

Geohìm. tehnog. (2019) 1:46-56
https://doi.org/10.15407/geotech2019.29.046

Dolin, V. Shcherbak, O. Samchuk, A. Pampukha, G.

Dolin V. Doctor of Geological Sciences, Professor, Deputy Director for Science, SI “Institute of Environmental Geochemistry, of the NAS of Ukraine”, vdolin@ukr.net, https://orcid.org/0000-0001-6174-2962.
Shcherbak O.
PhD (Geology), Researcher, SE “Institute of Environmental Geochemistry of the NAS of Ukraine”, scherbak_olesia@ukr.net
Samchuk A.
Doctor of Chemistry Science, Senior Researcher Officer, Chief Scientist, M.P. Semenenko Institute of geochemistry, mineralogy and ore formation of the National Academy of sciences of Ukraine
Pampukha G.
President, Europian Arbitration Chamber

Abstract

Disperse and chemical composition and morphometric-mineralogical peculiarities of dust from Trypilska thermal power plant (TPP) fly ash were investigated. Analytical data are analyzed regarding the content of suspended particles from the air within the influence zone of TPP (10 km). As a research material we used dust picked up from the air and leaves of Amaranthus. According to the study results, it was found that suspended particles undifferentiated by composition are mainly finely divided (less than 10 μm) fractions of silicates (aluminosilicates), sulfur crystals (sulphides, sulfates), zirconium oxides with copper, sodium, potassium, calcium, magnesium, sulfur, chlorine, single phosphorus inclusions and fluoride. The shape of the dust particles is predominantly conglomerate-like with the adherence of fine particles of different shapes from a perfectly spherical to a fragile with sharp edges. The content of silicon dioxide in the chemical composition of the dust reaches 70-20%. The presence of zirconium and “reactive silica” in the content of the researched dust confirms its mainly man-made genesis. After all, “reactive silica” (Si–) can only be formed as a result of high-temperature processing of quartz particles. Quartz aerosol particles formed during combustion of coal, actively interact with gases, acids, heavy metals with the formation of “quartz microcontainers”, carrying toxic substances. Getting into the human body, particles of quartz bring on its surface compounds that are strong toxins, carcinogens and mutagens. Acute fragments of quartz crystals cause mechanical damage to the tissues of the body. The dust fly ash from Trypillya TPP represents a significant environmental hazard for the population and vegetation of the 10-km zone. Inhalation of the dust by a person causes the development of respiratory diseases, namely: fibrosis, granulomas, silicosis. Deposition of the ash dust on the surface of the leaves leads to the drying of the plant because the biologically active silicon in the dust leads to the formation of calcium silicate microstalagmites in the tissues of leaves that overlap the stomata.

Keywords: air pollution, dust, fly ash, Trypilska TPP, silicates, zirconium oxides, «reactive silica»..

Article



Reference

  1. Vlasov, P.A. (2007), Naukovi pratsi Donetskoho natsionalnoho tekhnichnoho universytetu. Seriia: Hirnychoheolohichna, Issue 6, Donetsk, UA, pp.152-157.
  2. Ginzburg, A. I. (1968), Osobennosti petrograficheskogo sostava paleogenovyih buryih ugley Evropeyskoy chasti SSSR i raspredelenie v nih mikroelementov, Materials on geology and petrography of coals of the USSR, Vol. 132, Proceedings of VSEGEI, Leningrad, RU, pp.264-279.
  3. Didenko, P. I. (2008), Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques, No. 7, Moskow, RU, pp. 83–86.
  4. Didenko, P. I. (2007), Collected scientific papers Institute of Environmental Geochemistry, Issue 15, Kyiv, UA, pp. 43-54.
  5. Ekolohichnyi pasport Kyivskoi oblasti za 2016 rik, available at: https://menr.gov.ua/content/ekologichni-pasporti-regioniv.html (accessed August 27, 2018), UA.
  6. Energetika: istoriya, nastoyaschee i buduschee. Razvitie teploenergetiki i gidroenergetiki, (2012-2013), available at: http://energetika.in.ua/ru/books/book-3 (accessed August 27, 2018), UA.
  7. Zhdanov, V.V. (2009), Hihiienichna otsinka vplyvu shkidlyvykh vykydiv teploelektrostantsii na zdorovia naselennia y obgruntuvannia profilaktychnykh zakhodiv, a manuscript of dissertation for the candidate of medical sciences degree, M. Gorky Donetsk National Medical University of Ministry of Public Health, Donetsk, UA, 20 p.
  8. Zmenshennia vykydiv u teplovii elektroenerhetytsi Ukrainy cherez vykonannia vymoh Yevropeiskoho enerhetychnoho spivtovarystva: Zelena knyha. Dokument z analizu polityky pidhotovleno v ramkakh proektu “Stratehiia intehratsii Ukrainy v Yevropeiske enerhetychne spivtovarystvo”, (2011), International Center for Policy Studies, Kyiv, UA, 48 p.
  9. Petrov, S.B. (2009), Human Ecology, Arkhangelsk, RU, No.12, pp. 13-16.
  10. Komov, I.L., Frolov, O.S, Didenko, P.I. et al. (2005), Osnovnyie problemyi radonovoy bezopasnosti, Logos, Kyiv, UA, 352 p.
  11. Kizilshteyn, L.Ya., Dubov, I.V., Shpitsgluz, A.L., Parada, S.G. (1995), Komponentyi zol i shlakov TES, Energoatomizdat, Moscow, RU, 176 p.
  12. Kulyas, V. M. (2009),Medicni perspektivi, Vol. XIV, No. 4, Dnipro, UA pp. 68-71.
  13. Lisichkin, G.V., Fadeev, A.Yu., Serdan, A.A. et al. (2003), Himiya privityih poverhnostnyih soedineniy, FIZMATLIT, Moscow, RU, 592 p.
  14. Lishchenko, M. (2011), Lidarnyi ekolohichnyi kontrol aerozolnoho zabrudnennia atmosfery, Materialy XL rehionalnoi naukovo-tekhnichnoi konferentsii profesorsko-vykladatskoho skladu, spivrobitnykiv ta studentiv VNTU z uchastiu pratsivnykiv naukovo-doslidnykh orhanizatsii ta inzhenerno-tekhnichnykh pratsivnykiv pidpryiemstv m. Vinnytsi ta oblasti, Vinnytsia, UA, available at: http://eco.com.ua/sites/eco.com.ua/files/lib1/konf/XL_VNTU/zb_m/XL_VNTU_Lishenko.pdf (accessed August 27, 2018), UA.
  15. Muratov, O.E., Tikhonov, M.N. (2004), Industrial ecology, No. 4, Moskow, RU, pp. 13-19. https://doi.org/10.1162/1088198043630405
  16. Naukova ekoloho-ekspertna otsinka TEO “Trypilska TES enerhoblok № 2. Rekonstruktsiia.”, (2006), LTD «Heotekhnolohii», Kyiv, UA, 17 p.
  17. Petrov, S.B. (2013) Mediko-ekologicheskoe obosnovanie monitoringa zdorovya naseleniya na territoriyah razmescheniya tverdotoplivnyih teploelektrotsentraley, dissertation for the doctor of medical sciences degree, GBOU VPO Kirov State Medical Academy, Ministry of Health of the Russian Federation, Orenburg, RU, 290 p.
  18. Rukhlov, A.V. (2007),Mining Electromechanics and Automatics: Scientific and technical collection, Vol. 77, Dnipro, UA, pp. 19-25.
  19. 19.AirQualityGuidelinesforEurope: SecondEdition. WorldHealthOrganizationRegionalOfficeforEurope (2000),WHORegionalPublications, EuropeanSeries, Copenhagen,EU,No. 91, 273 р.
  20. Bell, M.L. (2012), Environmental Health Perspectives, No. 12, Vol. 120, Durham, UK, pp.1699-1704. https://doi.org/10.1289/ehp.1205201.
  21. Peters, A. (2009), Circulation, No. 9,Vol. 120, Waltham, USA, pp. 924-927. https://doi.org/10.1161/CIRCULATIONAHA.109.895524.
  22. Sorensen, M. (2003), Environmental Health Perspectives, No. 2, Vol. 111, Durham, UK, pp. 161-166. https://doi.org/10.1289/ehp.111-1241344.
  23. Zeger, S. (2008), Environmental Health Perspectives, No. 12, Vol. 116, Durham, UK, pp. 1614-1619. https://doi.org/10.1289/ehp.11449.