УДК 502.65:621.039.75:628.3 • Issue 3 (31) / 2020 • 53-60 pages

Bondar Yu., Kuzenko S., Slyvinsky V.

Bondar Yu., Senior scientist, State Institution «The Institute of Environmental Geochemistry of National Academy of Sciences of Ukraine»

Kuzenko S., Scientist, State Institution «The Institute of Environmental Geochemistry of National Academy of Sciences of Ukraine»

Slyvinsky V., Chief programmer, State Institution «The Institute of Environmental Geochemistry of National Academy of Sciences of Ukraine»


The development of sorption technologies for the removal, separation, and concentration of radionuclides is an actual problem. In this respect the development of modern fabrication approaches of efficient adsorbents become especially relevant nowadays. Composite adsorbents with a sorption-active inorganic phase are of particular interest for selective removal of radionuclides. Ion exchange resins are a promising solid support matrix for fabrication of composite adsorbents by formation of inorganic nanoparticles on the surface/inside polymer granules by one stage experiment in situ. This article presents the experimental results on the fabrication of novel composite adsorbent based on macroporous polystyrene resin with sulfonic acid groups by in situ formation of potassium-nickel ferrocyanide phase and its application for selective removal of cesium ions from the model solutions with high concentrations of competitive sodium ions. The obtained results of X–ray diffraction and scanning electron-microscopy studies confirm the formation of a ferrocyanide phase on the surface of polymer granules in the form of dense uniform layer of nanoscaled aggregates of potassium-copper ferrocyanide. Sorption experiments showed that composite polymer granules with the ferrocyanide phase are characterized by high selectivity to cesium ions in the presence of a significant excess of competitive sodium ions. The performed studies allow concluding that the synthesized composite adsorbent based on macroporous polymer granules with the ferrocyanide phase is of interest for practical use in sorption purification of natural waters and technological solutions from cesium radionuclides.

Key words: composite adsorbent, ion exchange resin, potassium-copper ferrocyanide, selectivity, 137Cs, liquid radioactive waste.




  1. Waste treatment and immobilization technologies involving inorganic sorbents (1997), IAEA-TECDOC-947, Vienna
  2. Myasoedova, G. V., Nikashina, V. A. (2006), him. zh. (Zh. Ros. him. ob-va im. D.I. Mendeleeva), L (5), pp. 55—63. (Russ.).
  3. Milyutin, V.V., Nekrasova, N.A., Haritonov, O.V., et al. (2016), Sorbtsionnye i khromatograficheskie protsessy, 16(3), pp 313—322. (Ru.).
  4. Epimakhov, V., Moskvin, L., Chetverikov, V., et al. (2010), Radiochemistry, 52, pp.610–612.
  5. Bondar, Yu., Kuzenko, S., Han, D-H. (2014), Nanoscale Res. Lett., 9, p. 180.
  6. Vincent, T., Vincent, C., Guibal, E. (2015), Molecules, 20, pp. 20582 – 20613.
  7. Galysh, V.V., Kartel, M.T., Milyutin, V.V., et al. (2014), Radioanal. Nucl. Chem.,301(2), pp. 315 – 321.
  8. Voronina, A. V., Kulyaeva, I. O. & Gupta, D. K. (2018), Radiochemistry, 60 (1), pp. 35-40.
  9. Epifanov A.O., Epifanova I.E. (2018), international journal of applied and fundamental research 11 (1). pp. 181-187. (Russ.).
  10. Watari K., Imai K., Ohmomo Y., et al. (1988), Nucl. Sci. Techn., 25 (5). pp. 495–499.
  11. Won H.-J., Moon J.-K., Jung C.-H., et al. (2008). Nuclear Engineer. Technol. 40 (6). рp. 489–496.
  12. Valsala, T.P., Roy, S.C., Shah, J.G., et al. Hazard. Mater. 2009. 166. рp.1148–1153.
  13. Tananaev, I.V., Saifer, G.B., Kharitonov, Yu.Ya. et al. (1971), Ferrocyanide chemistry, Nauka, Moskva, 320 p. (Russ.).
  14. Chang, С-Y., Chau, L-K., Hu, W-P., et al. (2008), Mesopor., 109 (1-3), pp. 505—512
  15. Mimura, H., Lehto, J., Harjula, R.(1997). Nucl. Sci. Technol., 34(6), pp. 582 – 587.
  16. Didukh, M. I., Lazaryev, М. М. (2010), VZNAU, N1 (47, 1), pp.3-10. (UA).