26.1 DEEP REPROCESSING OF SPENT NUCLEAR FUEL AS A KEY STEP FOR SUSTAINABLE DEVELOPMENT OF NUCLEAR ENERGY

UDC 502.171:622.333+550.42:546.56(477.83) • 📖 Issue 26 / 2016 • 5 — 16 pages

 

B. Shabalin, S. Bugera, E. Zakrytniy

B. Shabalin, D. Sc ( Geol.), Head of the Department, SI «The Institute of Environmental Geochemistry of NAS of Ukraine» b_shabalin@ukr.net, igns@i.com.ua
S. Bugera Junior Researcher, SI «The Institute of Environmental Geochemistry of NAS of Ukraine» igns@i.com.ua
E. Zakrytniy Junior Researcher, SI «The Institute of Environmental Geochemistry of NAS of Ukraine»

Abstract

The present paper focuses on the possible successive steps, with respect to nuclear fuel cycle improvement, which ensure stable development of the Nuclear Power Industry. Pu extracted from spent nuclear fuel (SNF) from light-water reactors (LWR) may be reused in MOX fuel for LWRs. Along with depleted uranium utilization, this will allow conserving of about 17% of natural uranium stocks using stable ultimate nuclear waste practically free from U and Pu. Further Pu multireprocessing requires fast reactors commissioning for effective use of U-238 available in natural and depleted form in SNF stocks. Processes of reprocessing and recycling of LWR SNF UOX fuel and MOX fuel should be developed and improved as well. In long-term prospect, extraction of minor actinides and long-lived fission products during SNF reprocessing envisages increasing of natural resource utilization efficiency and minimization of hazardous impact of nuclear wastes on the future generations due to reduction of residual heat generation and radiotoxicity which allows increasing of nuclear waste density and operation period of the repository. Step-by-step realization of these processes determines the stable further development of the Nuclear Power Industry.

 

Key words: nuclear fuel cycle, spent nuclear fuel, reprocessing, extraction of α-containing radionuclides, radiotoxicity.

 

Article



Reference

  1. Bergelson, B., Gerasimov, A.S., Zaritskaya, T.S. (2007), Radiotoksichnost i ostatochnoe energovyidelenie aktinoidov i produktov deleniya otrabotavshego yadernogo topliva VVER pri dlitelnom hranenii otrabotavshego topliva VVER s povyishennyim vyigoraniem, Atomnaya energiya, 102(5), pp. 292–296.
  2. Davidenko, V., Ponomarev-Stepnoy, N.N., Tsibulskiy, V.F (2014), Vozmozhnost radiatsionnoekvivalentnogo zahoroneniya othodov pri pererabotke, Atomnaya energiya. 116(1), pp. 55-56.
  3. Isaev, A. (2008), Problemyi obrascheniya s otrabotavshim toplivom, Atomnaya tehnika za rubezhom, 4, pp. 14–19.
  4. Kuznetsov, V. (2003), Yadernaya opasnost. Osnovnyie problemyi i sovremennoe sostoyanie bezopasnosti predpriyatiy yadernogo toplivnogo tsikla Rossiyskoy Federatsii, EPItsentr, Moscow, RU, 462 p.
  5. Rossman, G.I., Byihovskiy, L.Z., Samsonov, B.G. (2004), Hranenie i zahoronenie radioaktivnyih othodov (sistemnyiy obzor), VIMS, Moscow, RU, 240 p.
  6. Sokolova, I.D., Shulga, N.A. (2004), Usovershenstvovannyie, perspektivnyie i alternativnyie tehnologii yadernogo toplivnogo tsikla,  Atomnaya tehnika za rubezhom, 10, pp. 3–15.
  7. Otraslevoy standart Minenergo Ukraini (2010), SOU-N YaEK 1.027:2010, Metodika rascheta kolichestva vyisokoaktivnyih othodov, vozvraschaemyih Ukraine posle tehnologicheskogo hraneniya i pererabotki partii OTVSVVER-440.
  8. Yots Dzh (1995), Strategicheskie argumentyi v polzu yadernoy energetiki, osnovannyie na neobhodimosti sohraneniya okruzhayuschey sredyi, Atomnaya tehnika za rubezhom, 11, pp. 27–32.
  9. Azhazha, V.M., Belous, V.A., Gabelkov, S.V (2006), Yadernaya energetika. Obraschenie s otrabotannyim yadernyim toplivom i radioaktivnyimi othodami,  Naukova dumka, Kyiv, UA, 253 p.
  10. Yamana, H. (2007), Problemyi yadernogo toplivnogo tsikla, Atomnaya tehnika za rubezhom, 2, pp.17-20.
  11. Rahman, A. (2001), Nuclear waste management in France, Nuclear Energy, 40(6), pp.391-395.
  12. Poinssot, C., Rostaing C., Grandjean, S., Boullis, B. (2012), Recycling the actinides, the cornerstone of any sustainable nuclear fuel cycles, Procedia Chemistry, 7,  349 – 357.
  13. Poinssot C., Boullis B (2012), Actinide recycling within the closed fuel cycles, Nuclear Engineering International, 12, pp. 17-21.