UDC 502.171:622.333+550.42:546.56(477.83) • 📖 Issue 26 / 2016 • 17—26 pages


Yu. Ol’khovyk

Yu. Ol’khovyk Ph.D(Geol.-Min.), Senior Researcher, SI «Institute of Enviromental Geochemistry NAS Ukraine», yolkhovyk@ukr.net


The current situation of the “Shelter” object, which is characterized by intense processes of lava fuel-containing masses destruction as a result of the alpha decay of plutonium and minor actinide isotopes, is considered. Made in France, the complex study of the properties of borosilicate glass, doped by short-lived 244CmO2, showed a high resistance of the matrix to the effects of alpha-decay in situ. Up to a dose of 1,2∙1019∙α∙g-1 glass retains uniformity, the formation of any new phases, cracks and gas bubbles was not observed. The possibility of conversion of fuel containing lava masses in borosilicate glass, which is close in composition to the studied glasses SON68, using induction melting in the “cold” crucible is discussed. The cumulative dose in the glass, formed by the lava fuel-containing masses, does not exceed 1 ∙ 1018 α∙ g-1 for 100 000 years.


Key words: lava fuel-containing masses, disposal, vitrification, borosilicate glass, self-irradiation, alpha decay.




    1. Arutunian, L. Bolshov, A. Borovoy, E. Velikhov and A. Klyuchnikov (2010), Yadernoe toplivo v obekte «Ukryitie» Chernobyilskoy AES, Nauka, Moscow, RU, pp. 240.
    2. Ozhovan, P. (2010), Polouektov Primenenie stekol pri immobilizatsii radioaktivnyih othodov, Bezopasnost okruzhayuschey sredyi, 1, pp. 112—119.
    3. Olkhovyk (2015), Corrosion Resistance of Chernobyl NPP Lava Fuel-Containing Masses, Innovations in Corrosion and Materials Science, 5(1) , pp. 36 –  42.
    4. Olkhovyk (2014), O konditsionirovanii lavovyih toplivo-soderzhaschih mass ob’ekta ―Ukryitie, Yaderna energetika ta dovkIllya, 2(4), pp.52–55.
    5. Report on safety status of object , Shelter, 1, available at: http://www.chnpp.gov.ua/index.php?option=com_content&view=article&id=157&lang=ru
    6. Peuget, J.N. Cachia, C. Jegou, X. Deschanels, D. Roudil, V. Broudic, J.M. Delaye, J.M. Bart (2006), Irradiation stability of R7T7-type borosilicate glass, Journal of Nuclear Materials, 354, pp. 1–13.
    7. Weber, W.J. , Ewing, R.C., Angell, C.A. ,. Arnold, G.W. (1997), Radiation effects in glasses used for immobilization of high-level waste and plutoniumdisposition, Journal of Material Society,12 , pp. 1946–1978.
    8. Ewing, R. C., Weber, W. J. (2011), Actinide waste forms and radiation effects, Chemistry of the Actinide and Trasactinide Elements, 6, pp. 3813—3887.
    9. Peuget, S., Broudic, V., Jegou, P. Frugier, D. (2007), Effect of alpha radiation on the leaching behaviour of nuclear glass, Journal of Nuclear Materials, 362, pp. 474–479.
    10. Peuget, S., Delaye, J.-M., Jegou C., (2014), Specific outcomes of the research on the radiation stability of the French nuclear glass towards alpha decay accumulation, Journal of Nuclear Materials, 444, pp. 76–91.
    11. Peuget, S., Delaye, J.M., Bureau, G. (2009), Irradiation Stability of R7T7-Type Borosilicate Glass , Global – 2009,The Nuclear Fuel Cycle, Paris, FR.
    12. Fares, T., Peuge,t S., Bouty, O., Deschanels, X., Magnin, M., Jegou, C. (2011), Fares Helium diffusion in curium-doped borosilicate waste glass, Journal of Nuclear Materials, 416, pp. 236–241.
    13. Gabielkov, S. V., Kliuchnykov, О. О., Olіynyk, Ye. Ye., Parkhomchuk, P. E., Chemersky, G. F., Shcherbin, М. (2014), Nanosized pore channels as a component of pore space of lava-like fuel-containing materials of «Ukryttya» object,  Safety problems of nuclear power plants and Chernobyl, 22. pp. 70 – 73.
    14. Matyunin Y. I. and Yudintsev S. V. (1998), Issledovanie uransoderzhaschih borosilikatnyih stekol, sintezirovannyih v induktsionnom plavitele s holodnyim tiglem, Energy, 84, pp. 173-178.
    15. Ojovan M. I., Lee W. E. (2011), Glassy wasteforms for nuclear waste immobilization, Metallurgical and Materials Transactions A, 42A, pp. 837—851.